Data-Driven Chance Constrained Programs over Wasserstein Balls
نویسندگان
چکیده
In the era of modern business analytics, data-driven optimization has emerged as a popular modeling paradigm to transform data into decisions. By constructing an ambiguity set potential data-generating distributions and subsequently hedging against all member within this set, effectively combats with which real-life sets are plagued. Chen et al. (2022) study data-driven, chance-constrained programs in decision be feasible high probability under every distribution Wasserstein ball centered at empirical distribution. The authors show that problem admits exact deterministic reformulation mixed-integer conic program demonstrate (in numerical experiments) compares favorably several state-of-the-art schemes.
منابع مشابه
Data-driven chance constrained stochastic program
Chance constrained programming is an effective and convenient approach to control riskin decision making under uncertainty. However, due to unknown probability distributions ofrandom parameters, the solution obtained from a chance constrained optimization problem canbe biased. In addition, instead of knowing the true distributions of random parameters, inpractice, only a series ...
متن کاملConic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls
Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dim...
متن کاملAmbiguous Chance Constrained Programs: Algorithms and Applications
Ambiguous Chance Constrained Programs: Algorithms and Applications Emre Erdoğan Chance constrained problems are optimization problems where one or more constraints ensure that the probability of one or more events occurring is less than a prescribed threshold. Although it is typically assumed that the distribution defining the chance constraints are known perfectly; in practice this assumption ...
متن کاملChance-Constrained Programs for Link Prediction
In this paper, we consider the link prediction problem, where we are given a partial snapshot of a network at some time and the goal is to predict additional links at a later time. The accuracy of the current prediction methods is quite low due to the extreme class skew and the large number of potential links. In this paper, we describe learning algorithms based on chance constrained programs a...
متن کاملJoint rectangular geometric chance constrained programs
This paper discusses joint rectangular geometric chance constrained programs. When the stochastic parameters are elliptically distributed and pairwise independent, we present a reformulation of the joint rectangular geometric chance constrained programs. As the reformulation is not convex, we propose new convex approximations based on variable transformation together with piecewise linear appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research
سال: 2022
ISSN: ['1526-5463', '0030-364X']
DOI: https://doi.org/10.1287/opre.2022.2330